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Efficient Implementation of the Cauchy Method for
Automated CAD-Model Construction

Adam Lamecki, Piotr Kozakowski, Sudent Member, |EEE, and Michal Mrozowski, Senior Member, |EEE

Abstract—An efficient and stable implementation of the
multidimensional Cauchy method for creating high quality
multivariate models of microwave circuits from electromagnetic
(EM) simulation data is presented in this paper. The algorithm
uses the total least squares method to solve the ill-conditioned
interpolation problem and automatically determines the model
order and distribution of support points in the parameter space
in such a manner that instabilities are prevented. Numerical tests
show that the method requires fewer support points to achieve
similar accuracy asthe rational function models published previ-
oudly. The utility and accuracy of the technique is demonstrated
on a filter design example involving three- and five-dimensional
models.

Index Terms—Adaptive multivariate rational interpolation,
CAD modés, Cauchy method.

|. INTRODUCTION

URROGATE parametrized models of microwave compo-

ents constructed from data provided by a full-wave elec-

tromagnetic solver are one of the key building blocks of the suc-
cessful CAD of complex microwave circuits.

In recent years, the problem of creating models based
on electromagnetic simulations has received considerable
attention. One of the goals of the research in this area is to
create techniques that allow one to build a multidimensional
parametric model of a component using as few data points
as possible. An example of the technique which can be used
to achieve this goal are artificial neural networks (ANN) [1].
However, the difficulties related to finding the proper topology
and long training process make the ANN hard to apply in auto-
mated model generation procedures. Automatic model creation
was presented in [6]. In this proprietary algorithm, frequency is
handled separately from other physical parameters. At selected
frequency points multidimensiona models are created by
expanding the multivariate functions into series of orthogonal
multinomials. The expansion coefficients are found by solving
a system of interpolatory conditions. Support points are added
in an entirely adaptive way. Orthogonal multinomials improve
the numerical stability and efficiency of the interpolation. The
frequency dependence is added by one-dimensional rational
interpolation of the models' response. The procedure creates
models with good accuracy, but it is obvious that excluding
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frequency from the adaptive sampling procedure may result in
nonoptimal number of support points.

Models can also be created in an automated fashion by
interpolation EM data with multivariate rational functions.
The most straightforward approach is to extend the univariate
Cauchy method [4], which allows adaptive selection of support
points [2] and model order, to higher dimensions by setting up
and explicitly solving asystem of interpolatory conditions. This
approach involves a large ill-conditioned system of equations
that is expensive to solve. Since the adaptive selection of
support points and model order requires solving the system
many times, the technique is considered computationaly
ineffective, inaccurate and suitable for simple models [5], [7].
In fact, [5] shows the results for two-dimensional models. For
higher dimensions a fast and stable recursive Burlisch-Stoer
algorithm was developed [5] in which the adaptive sampling
can be applied only in one dimension and all other samples
have to form a completely filled uniform or nonuniform grid.
This implies that the number of full wave analyzes is high.
To reduce the number of support points while retaining the
speed and stability of interpolating algorithm Lehmensiek and
Meyer [7] devel oped techniques based on Thiele-type branched
continued fraction representation of a rational function. The
algorithms operate by using a univariate adaptive sampling
along a selected dimension. In this way, while the support
points do not fill the grid completely, they are being added
along straight lines passing through multidimensional space.
The efficiency of the agorithms was illustrated on two- and
three-dimensional models.

In this letter we show that despite earlier skepticism multi-
variaterational interpolation that involves setting up and explic-
itly solving a system of interpolatory condition can be imple-
mented in such a way that accurate high dimensional models
can be created automatically with support points added along
all dimensions (including frequency) simultaneously. From the
mathematical point of view, the starting point in our approach
and the basic idea for adaptive sampling is similar to that pre-
sented in[5]. Thealgorithm hashowever been developed in such
away that it becomes efficient and stable.

Il. MULTIVARIATE CAUCHY METHOD

We start with highlighting the key points of the multivariate
Cauchy method. The method interpolates a real or complex

valued function of N-variables S(X) = S(x1,22,...,2N)
with arational function
P~ A(X) A(.’L’l,.’L'Q,...,.’L'N)
1) = — = 1
(a1, 0N) B(X)  Bla1,42,...,an) )
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where both numerator A(X') and denominator B(X) are multi-
nomials. Multinomials are linear combinations of monomials
involving product of all variables raised to different powers|[8].
In the interpolation problem one looks for the values of co-
efficients of multinomials in numerator and denominator that
ensure S(X) = S(X) at all support points. Let AM; be the
number of a; coefficients associated with numerator and M,
be the number of b; associated with denominator of (1). Coeffi-
cients a; and b; can be found by requiring that

A(X) - SX)BX) =0 2

isfulfilledin at least L = My + M, support points.
The rational function fitting problem can be written in the
matrix form as

[A—B] m =0 @3)

wherea, b arethe vectorsof unknown coefficientsand [A] 1, x a, »
[B]Lxn, ae matrices involving the values of the monomials
appearing in numerator and denominator of (1) as well as the
values of the interpolated function at support points. Adding
new support points adds new equations to (3) and the system
becomes overdetermined. The new support points are added in
an adaptive way using the technique described in [2] and [5]. In
thistechnique two interpolants of different order are constructed
and compared. A new sample (and a new equation) is added at
the point where the two interpol ants show the biggest mismatch.

IIl. IMPLEMENTATION DETAILS

We now pass to the implementation details which are crucial
for numerical efficiency and stability of the whole procedure.
Problems involving interpolation with nonorthogonal multino-
mials areill-conditioned [8], therefore the method used to solve
system (3) has to be particularly robust. Following [3] we have
selected thetotal |east squares (TLS) method [9]. From the point
of view of model creation the TLS method has one additional
advantage. The most time consuming step involves the QR de-
composition of matrix C = [A — B]. Adding a new support
point to the system appearsto require anew QR decomposition.
Rather than doing that we compute the full QR decomposition
only once for a given interpolation model. As new points are
added the QR decomposition is updated using row update pro-
cedure described in[9]. The QR updateis much faster than afull
QR factorization. For example, the QR factorization of a com-
plex matrix with 1700 rows and 490 columns takes over 32 s,
while QR update takesonly 1 s.

Despite robustness of the TL S method, the algorithm may be-
come unstable. To prevent this one hasto monitor theinterpola-
tion error at each step. The mismatch between two interpolants
serves as an estimate of the interpolation error. New support
points are added, one at atime, as long as the error decreases.
The sudden error increase is the symptom of poor stability of
the numerical solution. Once this happens, the stability is re-
stored by adding more than one support point. Thisis achieved
by dividing the N-parameter space into 2™V sub-spaces. In each
subspace the point of biggest interpolant mismatch isfound and
the locations of these 2V maximaare added to the set of support

a) b)

L4 a

5

Fig. 1. Symmetric capacitive step (a) and iris (b) in rectangular waveguide.

points. This procedure is repeated until the stability is restored,
and in next step the model over original set of parameters is
computed. If NV issmall only a series of QR updates is carried
out. A similar procedure is used if a cluster of support points
forms.

It has to be noted that we were unable to find rigorous theory
why adding more points restores stability, our explanation of
thisfact isasfollows. The TLS method operates on the overde-
termined system of equation and instability appearswhen asup-
port point is ill-selected. When many points are added at the
sametimethe TLSisableto find asolution, in which theill-se-
lected point does not contribute.

The interpolation error estimate, that is used to select new
support points, is also used to adaptive model order selection.
The procedure starts with two different low order interpolants
and new support points are added using the stabilized adap-
tive sampling algorithm described above. This continues until
the error drops below the desired level, which indicates that the
model has converged, or until the stagnation is detected. Stag-
nation is defined as the situation where no significant error im-
provement is observed during successive K = 2V steps. If
this takes place, the degrees of the multinomials in numerator
and denominator are simultaneously increased. Increasing the
model order entails adding several monomials at once to both
numerator and denominator so more than one support points
have to be added. Again, the parameter space is divided into
a suitable number of subspaces and support points are added
at places where the biggest interpolants’ mismatch occurs. Ev-
erytime the model order isincreased a full QR factorization is
performed.

For the high complexity functions presented a gorithm needs
many memory resourcesto compute the model coefficientswith
TLS. Our suggestion is to limit the maximum size of the solved
system and if it is exceeded to divide the parameter space into
smaller subdomains, where the models can be easily evaluated.

IV. NUMERICAL RESULTS

To compare our agorithm with that of [7] two trivariate
models for (complex) reflection and transmission coeffi-
cients of waveguide discontinuities were constructed. The
mode-matching method was used to compute the EM data. The
first model was created for reflection coefficient S11(f, a,d)
of a symmetric capacitive step [Fig. 1(a)] in a standard
WR90 waveguide with f € [7 GHz,13 GHz], iris width
a € [2 mm,8 mm] and thickness d € [0.5 mm, 5 mm]. The
second model was determined for the transmission coefficient
Sa1(f, a,b) of aniris [Fig. 1(b)], with f € [8 GHz, 12 GHz],
a € [8 mm, 15 mm] and b € [1 mm, 3 mm]|. To evaluate the
accuracy the error function ¢ = ||5(X) — S(X)|| is maximized
in the parameter space with a global optimization procedure.
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TABLE |
EXAMPLE RESULTS

Structure | Support points | Maximum error [dB]
Step 112 —39.02
Step 301 —-50.98
Iris 75 -34.1
Iris 208 —53.91
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Fig. 2. Scattering parameters and structure (top-view) of the third order filter
: — model, -.- mode-matching. WR75 waveguide, structuredimensions: a; =
34.22 mm, as = 12.05 mm, a5 = 8.82 mm, ay = 8.4 mm, as =
36.45mm, L, = 20 mm, L, = 1 mm, Lz = 3.34 mm, L, = 3.73 mm,
Ly =16.03mm, d; = 9.23mm, d; = 16.2 mm, ds = 11.98 mm.

Table | shows number of points required to create models
and corresponding accuracy of the models relative to the mode-
matching computations. The error was defined as 20 log(emax )-

It can be seen that we need only 301 (step) or 208 (iris) sup-
port pointsto achieve the accuracy below —50 dB, whichis suf-
ficient in most applications. Let us note that thisis significantly
fewer support points than what was required with the method
presented in [7] (from approximately one fifth, for the step to
one fourth, for the iris).

A. Filter Design

To verify the quality of models generated by the proposed
technique and demonstrate that even very complex models can
be created, the third order waveguide filter shown in Fig. 2
was decomposed into discontinuities. Then three discontinuity
models of 5, 3, and 3 variables were generated with accuracy
better than —40 dB and connected by waveguide sections. For
example, in the 5-variate case (the discontinuity denoted as
Model 1inFig. 2), all S11, S2; and Sao parameters were mod-

eled with frequency range f € [10.5 GHz, 11.5 GHz], and other
parameters: a; € [14 min, 20 mm], L; € [32 mm, 45 mm],
az € [3 mm,6.5 mm] and Ly € [1 mm,5 mm]. To generate
a models of such complexity two different sets of fewer than
1700 support points were used. Fig. 2 compares the scattering
parameters of the filter computed using the models with the
full-wave mode-matching simulations. Good agreement is
seen, which indicates that our implementation of the multidi-
mensional Cauchy method yields high quality complex models
which may be used in CAD of microwave circuit.

V. CONCLUSIONS

A new implementation of the algorithm proposed in [5]
for automated model creation with multidimensional adaptive
Cauchy method was described. Stability and efficiency were
achieved by using TLS method for solving the interpolation
equations combined with the QR update and the monitoring of
interpolation error to detect convergence or potential instability
and automatically select support points and model order.
Clustering of support points and instability are prevented by
parameter space division.
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